Selected publications

April 2024
Hydrological Processes. - 38(2024)4, Art. e15126

Assessing impacts of alternative land use strategies on waterpartitioning, storage and ages in drought-sensitive lowlandcatchments using tracer-aided ecohydrological modelling

Shuxin Luo; Doerthe Tetzlaff; Aaron Smith; Chris Soulsby

The authors used advanced process-based ecohydrological modelling to assess the effects of realistic land use scenarios for the Berlin/Brandenburg region on water flux and storage dynamics. Replacing conifer forests with uneven-aged mixed forests with younger, broad-leaved trees had the greatest potential for reducing evapotranspiration and increasing groundwater recharge

April 2024
Hydrological Processes. - 38(2024)4, Art. e15137

Quantifying intra- and inter-annual dynamics of river-floodplain connectivity and wetland inundation with remote sensing and wavelet analysis

Hanwu Zheng; Doerthe Tetzlaff; Jonas Freymüller; Jana Chmieleski; Akpona Okujeni; Chris Soulsby

The authors used remote sensing data and wavelet analysis to quantify dynamics in floodplain inundation and riverfloodplain connectivity in the Lower Oder Valley National Park. They found marked inter-annual variation of wetland inundation. Heavy precipitation caused summer flooding in only one polder. This information is important for managing flows and sustaining valuable wetland habitats.

April 2024
Hydrological Processes. - 38(2024)3, Art. e15105

Six decades of ecohydrological research connecting landscapes and riverscapes in the Girnock Burn, Scotland: Atlantic salmon population and habitat dynamics in a changing world

C. Soulsby; I. A. Malcolm; D. Tetzlaff

Six decades of ecological monitoring provided the science needed to preserve Atlantic salmon. The unique long-term data revealed quantitative changes in the return rates, distribution, size, growth and age of salmon, increasing understanding on how ecosystems are changing in response to a warming climate.

April 2024
Journal of Hydrology. - 634(2024), Art. 131023

Hydrological model skills change with drought severity; insights from multi-variable evaluation

Giulia Bruno; Francesco Avanzi; Lorenzo Alfieri; Andrea Libertino; Simone Gabellani; Doris Duethmann

The study investigated the ability of the Continuum hydrological model in simulating the water cycle in the Po river basin (Italy) during droughts of increasing severity. The simulation of streamflow during the severe 2022 drought was characterized by comparatively lower performances than during moderate events, most likely due to challenges in representing high human influences via irrigation.

April 2024
Geophysical Research Letters. - 51(2024)6, Art. e2023GL107753

Increases in Water Balance-Derived Catchment Evapotranspiration in Germany During 1970s–2000s Turning Into Decreases Over the Last Two Decades, Despite Uncertainties

G. Bruno; D. Duethmann

The authors studied variations in evapotranspiration from precipitation and streamflow data for 461 German catchments from 1964–2019, by considering also changes in water storage and precipitation uncertainty. Evapotranspiration increased over 1970s–2000s, while it stabilized or even tended to decrease afterwards, and these variations were related with those in precipitation and solar radiation.

Monitoring stations

  • Water temperature
    -
  • Oxygen (rel./abs.)
    - / -
  • Wind speed
    -
Last measurement: No data available.
  • Water temperature
    -
  • Oxygen (rel./abs.)
    - / -
  • Wind speed
    -
Last measurement: No data available.
  • Water temperature
    -
  • Oxygen (rel./abs.)
    - / -
  • Wind speed
    -
Last measurement: No data available.

Share page