Selected publications

Scientific highlights of IGB
Filter for
Please find all scientific publications of IGB under > scientific publications
For more detailed information please refer to our > library catalogue
91 - 100 of 147 items
  • Department:(Dept. 1) Ecohydrology and Biogeochemistry
September 2022
Water Research. - 224(2022), Art. 119056

Fate of trace organic compounds in the hyporheic zone: influence of microbial metabolism

Anja Höhne; Birgit M. Müller; Hanna Schulz; Rebwar Dara; Malte Posselt; Jörg Lewandowski; James L. McCallum

The authors investigated the influence of microbial processes on the fate of trace organic compounds in stream sediments. The study demonstrates the usefulness of the fluorescent tracer system resazurin-resorufin for determining microbial metabolism and disentangling specific reactive properties and ultimately their influence on the fate of contaminants in natural hyporheic zones.

Hydrological Processes 36
September 2022
Hydrological Processes. - 36(2022)9, Art. e14686

Spatial and temporal dynamics of water isotopes in the riverine-marine mixing zone along the German Baltic Sea coast

Bernhard Aichner; Timo Rittweg; Rhena Schumann; Sven Dahlke; Svend Duggen; David Dubbert

The spatial and temporal variability of stable water isotopes were investigated in the Schlei and in the Baltic Sea boddens. The data improve the understanding of hydrological processes behind those dynamics. Further they will be a helpful contribution to multiple IGB projects, e.g. in context of migration studies of pike and analysis of biochemical processes in macrophytes

September 2022
Water Resources Research. - 58(2022)3, Art. e2021WR029771

Organizational principles of hyporheic exchange flow and biogeochemical cycling in river networks across scales

Stefan Krause; Benjamin W. Abbott; Viktor Baranov; Susana Bernal; Phillip Blaen; Thibault Datry; Jennifer Drummond; Jan H. Fleckenstein; Jesus Gomez Velez; David M. Hannah; Julia L.A. Knapp; Marie Kurz; Jörg Lewandowski; Eugènia Martí; Clara Mendoza-Lera; Alexander Milner; Aaron Packman; Gilles Pinay; Adam S. Ward; Jay P. Zarnetzke

Understanding organizational principles of hyporheic exchange flow and biogeochemical cycling in landscapes is key for generalizing process knowledge.

July 2022
Science of the Total Environment. - 843(2022), Art. 156879

The potential of large floodplains to remove nitrate in river basins: the Danube case

Martin Tschikof; Andreas Gericke; Markus Venohr; Gabriele Weigelhofer; Elisabeth Bondar-Kunze; Ute Susanne Kadene; Thomas Hein

Based on the modelling of nutrient fluxes in the Danube River Basin, the authors estimated the (potential) contribution of the large floodplains to remove nitrate from the Danube and major tributaries. The active floodplains retain 33000 tons per year, or 6.5% of the total nitrogen emissions, which can be increased by 5000 tons if floodplains and water bodies are reconnected.

June 2022
Proceedings of the National Academy of Sciences of the United States of America. - 119(2022)26, Art. e2102466119

A hybrid empirical and parametric approach for managing ecosystem complexity: water quality in Lake Geneva under nonstationary futures

Ethan R. Deyle; Damien Bouffard; Victor Frossard; Robert Schwefel; John Melack; George Sugihara

A hybrid model which combines a classical 1D lake model with data-driven machine learning was used to predict changes in deepwater oxygen concentrations under varying climatic conditions and nutrient concentrations. The model predicted deepwater oxygen concentrations of Lake Geneva more precisely than a classical approach. Increasing air temperatures have similar effects as phosphorus inputs.

Environmental_Science_WaterResearch&Technology
June 2022
Environmental Science : water research & technology. - 8(2022)6, 1287-1299

Performance of biochars for the elimination of trace organic contaminants and metals from urban stormwater

Stephanie Spahr; Marc Teixidó; Sarah S. Gall; James C. Pritchard; Nikolas Hagemann; Brigitte Helmreich; Richard G. Luthy

This study combines laboratory batch and column experiments with transport modeling to assess the efficacy and longevity of biochar filters for urban stormwater treatment. Biochar can serve as cost-effective adsorbent for the removal of polar organic contaminants in urban stormwater runoff.

Platzhalter Publikations-Cover
May 2022
Earth system science data. - 14(2021)4, S. 1857–1867

Spatial and seasonal patterns of water isotopes in northeastern German lakes

Bernhard Aichner; David Dubbert; Christine Kiel; Katrin Kohnert; Igor Ogashawara; Andreas Jechow; Sarah-Faye Harpenslager; Franz Hölker; Jens Christian Nejstgaard; Hans-Peter Grossart; Gabriel Singer; Sabine Wollrab; Stella Angela Berger

In course of measuring campaigns, the spatial and temporal dynamics of water isotopes in northeastern German lakes were evaluated. The data will serve as basis for further studies, for example with respect to connectivity of lakes and biochemical processes in macrophytes.

April 2022
Hydrology and Earth System Sciences. - 26(2022)9, 2073–2092

Xylem water in riparian Willow trees (Salix alba) reveals shallow sources of root water uptake by in-situ monitoring of stable water isotopes

Jessica Landgraf; Dörthe Tetzlaff; Maren Dubbert; David Dubbert; Aaron Smith; Chris Soulsby

The authors monitored stable isotopes in-situ at high resolution in soil and plant water at an urban green space to understand the ecohydrological functioning of the Critical Zone, i.e., the thin, dynamic, life-sustaining skin of the Earth that extends from the canopy top to the active groundwater. At the end of the growing season deeper than upper soil water was used for plant water uptake.

 

April 2022
Limnology and Oceanography. - 67(2022)4, 768-783

Geochemical focusing and burial of sedimentary iron, manganese, and phosphorus during lake eutrophication

Grzegorz Scholtysik; Tobias Goldhammer; Helge W. Arz; Matthias Moros; Ralf Littke; Michael Hupfer

From the distribution of manganese, iron and phosphorus within sediment cores from 11 water depths of Lake Arendsee, changes in the trophic state and oxygen conditions could be reconstructed. The redox-controlled geochemical focussing induced authigenic vivianite formation under oligo-mesotrophic conditions about 100 years ago, resulting locally in strongly increased burial phosphorus deposition.