Selected publications

Scientific highlights of IGB
Filter for
Please find all scientific publications of IGB under > scientific publications
For more detailed information please refer to our > library catalogue
91 - 100 of 154 items
  • Department:(Dept. 1) Ecohydrology and Biogeochemistry
December 2022
Hydrological Processes. - 36(2022)12, Art. e14779

Using stable water isotopes to understand ecohydrological partitioning under contrasting land uses in a drought-sensitive rural, lowland catchment

Jessica Landgraf; Dörthe Tetzlaff; Songjun Wu; Jonas Freymüller; Chris Soulsby

To analyse the influence of vegetation on water partitioning under land management strategies, the authors used stable water isotopes with contrasting land covers and soil types in the Demnitzer Millcreek. The study underlined the need for long-term observations of land use changes and drought-sensitive vegetation to evolve a drought resilient land management considering time lags.

December 2022
Landscape and Urban Planning. - 231(2023), Art. 104639

Dynamics in impervious urban and non-urban areas and their effects on run-off, nutrient emissions, and macroinvertebrate communities

Hong Hanh Nguyen; Markus Venohr; Andreas Gericke; Andrea Sundermann; Ellen A.R.Welti; Peter Haase

About 20 % of the newly sealed area is not in urban areas, but in rural areas, according to the model calculations of this study. Calculations of nutrient fluxes into water bodies have not taken these new sealings in rural areas into account, because these are often based on land use maps and consider urban areas. As a result, the nutrient loads of water bodies are systematically underestimated. 

Hydrological Processes 36
November 2022
Hydrological Processes. - 36(2022)11, Art. e14746

Water cycling and partitioning through the soil–plant–atmosphere continuum in a subtropical, urban woodland inferred by water stable isotopes

Ke Chen ... Doerthe Tetzlaff ...

The authors conducted a sampling campaign of water isotopes, combined with climatic and hydrometric data across an evergreen broad-leaved woodland, to assess event-based changes in water cycling and partitioning. Quantifying the transfer of water in the soil-plant-atmosphere continuum improved the understanding of water cycling and partitioning in an urban woodland in a monsoon humid region.

November 2022
Science of the Total Environment. - 854(2023), Art. 158670

Towards the outwelling hypothesis in a Patagonian estuary: first support from lipid markers and bacterial communities

Germán A. Kopprio; Ana Martínez; Anna Fricke; Michael Hupfer; Rubén J. Lara; Martin Graeve; Astrid Gärdes

Fatty acid markers, stable isotopes of C and N, and bacterial communities were investigated in a mesotidal estuary of the Patagonia to assess the Odum’s outwelling hypothesis. Rhodobacterales were likely early colonizers of the outwelled organic matter and the exportation of nutrients and organisms and their essential fatty acids from the wetland was inferred, supporting the findings of Odum.

November 2022
Journal of Hydrology. - 614(2022)Part A, Art. 128462

Evaluating satellite-derived soil moisture data for improving the internal consistency of process-based ecohydrological modelling

Doris Duethmann; Aaron Smith; Chris Soulsby; Lukas Kleine; Wolfgang Wagner; Sebastian Hahn; Dörthe Tetzlaff

The authors investigated whether satellite-derived soil moisture products of high spatio-temporal resolution are useful for calibrating a process-based ecohydrological model. Including soil moisture data for calibration improved process-consistency of the model. At this scale, the temporal dynamics of the satellite-derived data were more helpful for model calibration than the spatial patterns.

 

October 2022
Geophysical Research Letters. - 49(2022)20, Art. e2022GL098917

The role of boundary mixing for diapycnal oxygen fluxes in a stratified marine system

P. Holtermann; O. Pinner; R. Schwefel , L. Umlauf

The research team investigated the vertical oxygen flux through the halocline in the Baltic Sea using high-resolution temperature and oxygen profiles during different seasons. Oxygen transport showed a strong seasonality and was higher in autumn compared to summer and winter. The shoreline regions were responsible for >80% of the total oxygen transport through the halocline.

October 2022
Science of the Total Environment. - 854(2023), Art. 158663

Formation of vivianite in digested sludge and its controlling factors in municipal wastewater treatment

Lena Heinrich; Peter Schmieder; Matthias Barjenbruch; Michael Hupfer

Phosphorus as scare raw material can be recovered from municipal wastewater treatment as iron phosphate mineral vivianite. Vivianite formation increased with higher iron and lower sulphur content. The study suggests that the use of sulphur-free precipitants for chemical P elimination may enhance vivianite formation. The new insights are also of high relevance for the research on aquatic sediments.

September 2022
Water Research. - 224(2022), Art. 119056

Fate of trace organic compounds in the hyporheic zone: influence of microbial metabolism

Anja Höhne; Birgit M. Müller; Hanna Schulz; Rebwar Dara; Malte Posselt; Jörg Lewandowski; James L. McCallum

The authors investigated the influence of microbial processes on the fate of trace organic compounds in stream sediments. The study demonstrates the usefulness of the fluorescent tracer system resazurin-resorufin for determining microbial metabolism and disentangling specific reactive properties and ultimately their influence on the fate of contaminants in natural hyporheic zones.

Hydrological Processes 36
September 2022
Hydrological Processes. - 36(2022)9, Art. e14686

Spatial and temporal dynamics of water isotopes in the riverine-marine mixing zone along the German Baltic Sea coast

Bernhard Aichner; Timo Rittweg; Rhena Schumann; Sven Dahlke; Svend Duggen; David Dubbert

The spatial and temporal variability of stable water isotopes were investigated in the Schlei and in the Baltic Sea boddens. The data improve the understanding of hydrological processes behind those dynamics. Further they will be a helpful contribution to multiple IGB projects, e.g. in context of migration studies of pike and analysis of biochemical processes in macrophytes

September 2022
Water Resources Research. - 58(2022)3, Art. e2021WR029771

Organizational principles of hyporheic exchange flow and biogeochemical cycling in river networks across scales

Stefan Krause; Benjamin W. Abbott; Viktor Baranov; Susana Bernal; Phillip Blaen; Thibault Datry; Jennifer Drummond; Jan H. Fleckenstein; Jesus Gomez Velez; David M. Hannah; Julia L.A. Knapp; Marie Kurz; Jörg Lewandowski; Eugènia Martí; Clara Mendoza-Lera; Alexander Milner; Aaron Packman; Gilles Pinay; Adam S. Ward; Jay P. Zarnetzke

Understanding organizational principles of hyporheic exchange flow and biogeochemical cycling in landscapes is key for generalizing process knowledge.