Water and matter cycles

Rivers, lakes and wetlands connect the land to the sea, they are directly linked to groundwater, and regulate the global nutrient and carbon balance. Their sediments are also highly active zones that can extract nutrients and contaminants from the surface water. We explore these complex physical, hydrological, biological and chemical processes and interactions. We then use the knowledge gained to develop concepts for sustainable water management and for enhancing water quality. For example, we focus on the wetland rehydration of bogs, interactions between groundwater and surface water, the significance of riparian zones, and matter conversion in sediments.

Selected publications

April 2025
WIREs Water. - 12(2025)2, Art. e70018

The Unexploited Treasures of Hydrological Observations Beyond Streamflow for Catchment Modeling

Paul D. Wagner; Doris Duethmann; Jens Kiesel; Sandra Pool; Markus Hrachowitz; Serena Ceola; Anna Herzog; Tobias Houska; Ralf Loritz; Diana Spieler; Maria Staudinger; Larisa Tarasova; Stephan Thober; Nicola Fohrer; Doerthe Tetzlaff; Thorsten Wagener; Björn Guse

Other hydrological data than streamflow have the potential to improve process consistency in hydrological modeling and consequently for predictions under change. The authors review how storage and flux variables are used for model evaluation and calibration; improving process representation.

March 2025
WIREs Water. - 12(2025)2, Art. e70015

Recent Developments and Emerging Challenges in Tracer-Aided Modeling

Hyekyeng Jung; Dörthe Tetzlaff; Christian Birkel; Chris Soulsby

The authors reviewed recent advances and remaining challenges of tracer-aided modelling which offers insights into internal storages, water sources, flow pathways, mixing processes, and water ages, which cannot be derived from hydrometric data alone. Tracer data have the capability to falsify hydrological models and test hypotheses, and thus increase understanding of hydrological processes.

February 2025
Hydrological Processes. - 39(2024)2, Art. e70077

Seasonal and Inter-Annual Dynamics in Water Quality and Stream Metabolism in a Beaver-Impacted Drought-Sensitive Lowland Catchment

Famin Wang; Doerthe Tetzlaff; Christian Birkel; Jonas Freymueller; Songjun Wu; Sylvia Jordan; Chris Soulsby

The authors monitored  water quality parameters over 3 years in an intermittent stream network in the eutrophic, lowland Demnitzer Millcreek catchment, Germany. They focused on the effects of wetland systems impacted by beaver dams on the diurnal, seasonal and inter-annual variation in water quality dynamics and modelled stream metabolism. 

January 2025
Water Resources Research. - 61(2025)1, Art. e2024WR037656

Revising Common Approaches for Calibration: Insights From a 1-D Tracer-Aided Hydrological Model With High-Dimensional Parameters and Objectives

Songjun Wu; Doerthe Tetzlaff; Chris Soulsby

Dimensionality of parameters and objectives has been increasing due to the accelerating development of models and monitoring networks resulting in major challenges for model calibration. The study highlights limitations of high-dimensional calibration approaches, the role of data uncertainty and deficiencies in model structure of process-based ecohydrological models.

November 2024
Water Resources Research. - 60(2024)9, Art. e2024WR037508

Attributing Urban Evapotranspiration From Eddy‐Covariance to Surface Cover: Bottom‐Up Versus Top‐Down

H. J. Jongen; S. Vulova; F. Meier; G. J. Steeneveld; F. A. Jansen; D. Tetzlaff; B. Kleinschmit; N. Haacke; A. J. Teuling

Evapotranspiration (ET) is an important process in the water cycle that can help reduce heat stress in cities. However, it is dependent on surface cover. The study provides insights that can inform urban planning and water management decisions, including improving the living environment of city dwellers.