© Lena Giovanazzi

Research for the future of our freshwaters

Through innovative research on the structure and functioning of freshwaters, their biodiversity, ecosystem services and responses to global change, we make a relevant contribution to a better understanding of these ecosystems and to sustainable freshwater management.
© David Ausserhofer/IGB

Our programme areas

In three programme areas, we link internationally competitive basic research with applied research for the sustainable use and conservation of inland waters. This integrative and dynamic approach allows us to develop innovative ideas, respond to research questions and impulses from science and society as well as to drive national, European and global research developments.
© Solvin Zankl

Our research groups

The 37 research groups at IGB are organised in five disciplinary departments that enable multi-faceted research in freshwater ecology and inland fisheries. Their work is integrated most prominently within three programme areas that represent overarching research themes.
© Carmen Cillero/3edata

Our infrastructure

IGB maintains large-scale research facilities such as the IGB LakeLab in Lake Stechlin or the River Lab in the Tagliamento River. Our infrastructure also includes fish and invertebrates facilities as well as modern biogeochemistry, stable isotope, microbial and molecular laboratories. In addition, we use and advance a wide range of models and methods such as remote sensing, 3D print-assisted sampling, sensor technology and AI-assisted image analysis.
© Dr. Julian Taffner (TERRAALIENS)

Our latest scientific highlights

Why biodiversity in European rivers has not recovered since 2010 | Persistent, mobile and toxic substances in urban stormwater | Some lakes are more polluted with microplastics than the oceans and other findings from IGB research

Downloads

Outlines | IGB Dossier: Small standing water bodies as biodiversity hotspots – particularly valuable, but highly endangered

Small standing waters are overlooked and underestimated because of their small size – yet they account for more than 30 percent of the world's inland water bodies and are of great ecological and social importance. In order to raise awareness of this problem and to point out options for action for policymakers, authorities and the civil society, IGB has published an IGB Dossier on this important type of water body. 

Selected publications

September 2023

Environmental Science & Technology - XX(2023)XX, XX

Predicting PFAS and Hydrophilic Trace Organic Contaminant Transport in Black Carbon-Amended Engineered Media Filters for Improved Stormwater Runoff Treatment

James Conrad Pritchard; Yeo-Myoung Cho; Kathleen Mills Hawkins; Stephanie Spahr; Christopher P. Higgins; Richard G. Luthy

Hydrophilic organic contaminants and per- and polyfluoroalkyl substances (PFAS) are difficult to remove from stormwater runoff. A contaminant transport model was validated to better estimate the removal of contaminants in stormwater filtration systems.

Environmental Science_Water Research & Technology
September 2023
Environmental Science : water research & technology. - XX(2023)XX, XX

Urban stormwater capture for water supply: look out for persistent, mobile and toxic substances

Lena Mutzner; Kefeng Zhang; Richard G. Luthy; Hans Peter H. Arp; Stephanie Spahr

Persistent, mobile and toxic (PMT) substances pose a threat to water supplies and aquatic ecosystems. This review article presents our current knowledge on PMT substances in urban stormwater and identifies future research needs for improved stormwater monitoring and management.

September 2023
Nature. - 619(2023), S. 317–322

Plastic debris in lakes and reservoirs

Veronica Nava; Sudeep Chandra; Julian Aherne; María B. Alfonso; Ana M. Antão-Geraldes; Katrin Attermeyer; Roberto Bao; Mireia Bartrons; Stella A. Berger; Marcin Biernaczyk; Raphael Bissen; Justin D. Brookes; David Brown; Miguel Cañedo-Argüelles; Moisés Canle; Camilla Capelli; Rafael Carballeira; José Luis Cereijo; Sakonvan Chawchai; Søren T. Christensen; Kirsten S. Christoffersen; Elvira de Eyto; Jorge Delgado; Tyler N. Dornan; Jonathan P. Doubek; Julia Dusaucy; Oxana Erina; Zeynep Ersoy; Heidrun Feuchtmayr; Maria Luce Frezzotti; Silvia Galafassi; David Gateuille; Vitor Gonçalves; Hans-Peter Grossart; David P. Hamilton; Ted D. Harris; Külli Kangur; Gökben Başaran Kankılıç; Rebecca Kessler; Christine Kiel; Edward M. Krynak; Àngels Leiva-Presa; Fabio Lepori; Miguel G. Matias; Shin-ichiro S. Matsuzaki; Yvonne McElarney; Beata Messyasz; Mark Mitchell; Musa C. Mlambo; Samuel N. Motitsoe; Sarma Nandini; Valentina Orlandi; Caroline Owens; Deniz Özkundakci; Solvig Pinnow; Agnieszka Pociecha; Pedro Miguel Raposeiro; Eva-Ingrid Rõõm; Federica Rotta; Nico Salmaso; S. S. S. Sarma; Davide Sartirana; Facundo Scordo; Claver Sibomana; Daniel Siewert; Katarzyna Stepanowska; Ülkü Nihan Tavşanoğlu; Maria Tereshina; James Thompson; Monica Tolotti; Amanda Valois; Piet Verburg; Brittany Welsh; Brian Wesolek; Gesa A. Weyhenmeyer; Naicheng Wu; Edyta Zawisza; Lauren Zink; Barbara Leoni

Microplastics are found in lakes and reservoirs around the world. Pollution reaches even the most secluded places where human influence is minimal. Moreover, concentrations of microplastics in freshwaters are sometimes higher than in subtropical gyres, the marine areas where large amounts of waste accumulate. 

September 2023
Nature. - 620(2023), S. 582–588

The recovery of European freshwater biodiversity has come to a halt

Peter Haase; Diana E. Bowler; Nathan J. Baker; Núria Bonada; Sami Domisch; Jaime R. Garcia Marquez; Jani Heino; Daniel Hering; Sonja C. Jähnig; Astrid Schmidt-Kloiber; Rachel Stubbington; Florian Altermatt; Mario Álvarez-Cabria; Giuseppe Amatulli; David G. Angeler; Gaït Archambaud-Suard; Iñaki Arrate Jorrín; Thomas Aspin; Iker Azpiroz; Iñaki Bañares; José Barquín Ortiz; Christian L. Bodin; Luca Bonacina; Roberta Bottarin; Miguel Cañedo-Argüelles; Zoltán Csabai; Thibault Datry; Elvira de Eyto; Alain Dohet; Gerald Dörflinger; Emma Drohan; Knut A. Eikland; Judy England; Tor E. Eriksen; Vesela Evtimova; Maria J. Feio; Martial Ferréol; Mathieu Floury; Maxence Forcellini; Marie Anne Eurie Forio; Riccardo Fornaroli; Nikolai Friberg; Jean-François Fruget; Galia Georgieva; Peter Goethals; Manuel A. S. Graça; Wolfram Graf; Andy House; Kaisa-Leena Huttunen; Thomas C. Jensen; Richard K. Johnson; J. Iwan Jones; Jens Kiesel; Lenka Kuglerová; Aitor Larrañaga; Patrick Leitner; Lionel L’Hoste; Marie-Helène Lizée; Armin W. Lorenz; Anthony Maire; Jesús Alberto Manzanos Arnaiz; Brendan G. McKie; Andrés Millán; Don Monteith; Timo Muotka; John F. Murphy; Davis Ozolins; Riku Paavola; Petr Paril; Francisco J. Peñas; Francesca Pilotto; Marek Polášek; Jes Jessen Rasmussen; Manu Rubio; David Sánchez-Fernández; Leonard Sandin; Ralf B. Schäfer; Alberto Scotti; Longzhu Q. Shen; Agnija Skuja; Stefan Stoll; Michal Straka; Henn Timm; Violeta G. Tyufekchieva; Iakovos Tziortzis; Yordan Uzunov; Gea H. van der Lee; Rudy Vannevel; Emilia Varadinova; Gábor Várbíró; Gaute Velle; Piet F. M. Verdonschot; Ralf C. M. Verdonschot; Yanka Vidinova; Peter Wiberg-Larsen; Ellen A. R. Welti

The comprehensive study shows that between 1968 and 2010, biodiversity in river systems in 22 European countries initially recovered due to improved water quality. Since 2010, however, biodiversity has stagnated; many river systems have not fully recovered. The researchers therefore urgently recommend additional measures to further promote the recovery of biodiversity in inland waters. 

August 2023
Science of the Total Environment. - 900(2023), Art. 165764

Effects of 66 years of water management and hydroclimatic change on the urban hydrology and water quality of the Panke catchment, Berlin, Germany

Christian Marx; Doerthe Tetzlaff; Reinhard Hinkelmann; Christopher Soulsby

The authors analysed a data set of 66-yr streamwater quality,  21-yr of groundwater quality and 31-yr streamflow nested from the heavily urbanized Panke catchment in Berlin. The upstream parts showed a flow regime most sensitive to changes in hydroclimatic conditions, downstream sites are more influenced by wastewater effluents, urban storm drains and inter-basin transfers for flood alleviation.

Monitoring stations

  • Water temperature
    -
  • Oxygen (rel./abs.)
    - / -
  • Wind speed
    -
Last measurement: No data available.
  • Water temperature
    -
  • Oxygen (rel./abs.)
    - / -
  • Wind speed
    -
Last measurement: No data available.
  • Water temperature
    -
  • Oxygen (rel./abs.)
    - / -
  • Wind speed
    -
Last measurement: No data available.

Share page