Selected publications

Scientific highlights of IGB
Filter for
Please find all scientific publications of IGB under > scientific publications
For more detailed information please refer to our > library catalogue
31 - 40 of 42 items
  • Topic:Environmental change
March 2021
Water Resources Research. - 57(2021)3, e2020WR029094

Catchment functioning under prolonged drought stress: Tracer‐aided ecohydrological modeling in an intensively managed agricultural catchment

Xiaoqiang Yang; Doerthe Tetzlaff; Chris Soulsby; Aaron Smith; Dietrich Borchardt

The authors investigated the effects of recent years’ droughts on ecohydrological processes in an agricultural catchment using an isotope-aided model (EcH2O-iso). Stream discharge could be sustained by deep, old groundwater, while transpiration fluxes were heavily reduced by drought stress. Crucially, tracer-based water age estimates can be used as potential indicators of drought impacts.

March 2021
Science of the Total Environment. - 780(2021), Art. 146494

Soil erosion modelling: a global review and statistical analysis

Pasquale Borrelli; Christine Alewell; Pablo Alvarez; Jamil Alexandre Ayach Anache; Jantiene Baartman; Cristiano Ballabio; Nejc Bezak; Marcella Biddoccu; Artemi Cerdà; Devraj Chalise; Songchao Chen; Walter Chen; Anna Maria De Girolamo; Gizaw Desta Gessesse; Detlef Deumlich; Nazzareno Diodato; Nikolaos Efthimiou; Gunay Erpul; Peter Fiener; Michele Freppaz; Francesco Gentile; Andreas Gericke; Nigussie Haregeweyn; Bifeng Hu; Amelie Jeanneau; Konstantinos Kaffas; Mahboobeh Kiani-Harchegani; Ivan Lizaga Villuendas; Changjia Li; Luigi Lombardo; Manuel López-Vicente; Manuel Esteban Lucas-Borja; Michael Märker; Francis Matthews; Chiyuan Miao; Matjaž Mikoš; Sirio Modugno; Markus Möller; Victoria Naipal; Mark Nearing; Stephen Owusu; Dinesh Panday; Edouard Patault; Cristian Valeriu Patriche; Laura Poggio; Raquel Portes; Laura Quijano; Mohammad Reza Rahdari; Mohammed Renima; Giovanni Francesco Ricci; Jesús Rodrigo-Comino; Sergio Saia; Aliakbar Nazari Samani; Calogero Schillaci; Vasileios Syrris; Hyuck Soo Kim; Diogo Noses Spinola; Paulo Tarso Oliveira; Hongfen Teng; Resham Thapa; Konstantinos Vantas; Diana Vieira; Jae E. Yang; Shuiqing Yin; Demetrio Antonio Zema; Guangju Zhao; Panos Panagos

67 scientists reviewed 1700 peer-reviewed articles on soil-erosion modelling. The study addresses the relevance of regions, models, and model validation and includes the open-source database. 

February 2021
Hydrology and Earth System Sciences. - 25(2021)2, 927–943

Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning

Lena-Marie Kuhlemann; Doerthe Tetzlaff; Aaron Smith; Birgit Kleinschmit; Chris Soulsby

The authors studied water partitioning in different urban green spaces using stable isotopes. During the warm and dry 2019, evapotranspiration losses of grass and trees were higher than those of potentially more drought-resilient shrub. The study contributes to a better understanding of urban ecohydrological partitioning, which will be essential to sustainably meet water demands of urban green.

February 2021
Ecological Indicators. - 118(2020), Art. 106766

Species-specific macroinvertebrate responses to climate and land use scenarios in a Mediterranean catchment revealed by an integrated modelling approach

Jawairia Sultana; Friedrich Recknagel; Hong Hanh Nguyen

The authors applied an integrated modelling approach to address the complex species-specific macroinvertebrate responses to climate and land-use changes. The results indicate the non-linear response of species within the commonly used Ephemeroptera, Plecoptera and Trichoptera taxa to altered streamflow conditions and highlight the need to include the species level responses in such studies.

February 2021
The ISME journal. - (2021)

Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika

Patricia Q. Tran; Samantha C. Bachand; Peter B. McIntyre; Benjamin M. Kraemer; Yvonne Vadeboncoeur; Ismael A. Kimirei; Rashid Tamatamah; Katherine D. McMahon; Karthik Anantharaman

The authors profiled the microbial community in Lake Tanganyika down to a kilometer deep and investigated their role in biogeochemical cycling. The microbial community in the surface waters was not all that different from a temperate lake, the anoxic water contained high abundances of Archaea (30%) and uncultured candidate phyla with high genomic capacity for nitrogen and sulfur cycling.

January 2021
Environmental modelling & software. - 133(2020)November, 104852

Performance of one-dimensional hydrodynamic lake models during short-term extreme weather events

J.P. Mesman; A.I. Ayala; R. Adrian; E. De Eyto; M.A. Frassl; S. Goyette; J. Kasparian; M. Perroud; J.A.A. Stelzer; D.C. Pierson; B.W. Ibelings

Little is known about the accuracy of numerical lake models during short-term events. Three 1D lake models reproduced the overall impacts of storms and heatwaves well. Timing of effects was simulated accurately and there was little consistent bias. Uncertainty in simulations increased during extremes compared to reference periods.

December 2020
Global Change Biology. - 26(2020)10, S. 5509-5523

The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes

Guido A. Herrera‐R ; Thierry Oberdorff ; Elizabeth P. Anderson ; Sébastien Brosse ; Fernando M. Carvajal‐Vallejos ; Renata G. Frederico ; Max Hidalgo ; Céline Jézéquel ; Mabel Maldonado ; Javier A. Maldonado‐Ocampo ; Hernán Ortega ; Johannes Radinger ; Gislene Torrente‐Vilara ; Jansen Zuanon ; Pablo A. Tedesco

Combining species distribution models and functional traits of Andean Amazon fishes, coupled with dam locations and climatic projections, the authors evaluated the potential impacts of future climate on species ranges, investigated the combined impact of river fragmentation and climate change and tested the relationships between these impacts and species functional traits.

December 2020
BioScience. - 70(2020)9, S. 772-793

The complexity of urban eco-evolutionary dynamics

Marina Alberti; Eric P. Palkovacs; Simone Des Roches; Luc De Meester; Kristien I. Brans; Lynn Govaert; Nancy B. Grimm; Nyeema C. Harris; Andrew P. Hendry; Christopher J. Schell; Marta Szulkin , Jason Munshi-South; Mark C. Urban; Brian C. Verrelli

Urbanization is a complex process that impacts both the ecology and evolution of species. The researchers identified five key urban drivers of this change and highlight the direct consequences of urbanization-driven eco-evolutionary change for nature’s contributions to people. They subsequently explored five emerging complexities that need to be tackled in future research.

November 2020
Global Change Biology. - 26(2020)3, S. 1196-1211

Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales

Elena Piano; Caroline Souffreau; Thomas Merckx; Lisa F. Baardsen; Thierry Backeljau; Dries Bonte; Kristien I. Brans; Marie Cours; Maxime Dahirel; Nicolas Debortoli; Ellen Decaestecker; Katrien De Wolf; Jessie M. T. Engelen; Diego Fontaneto; Andros T. Gianuca; Lynn Govaert; Fabio T. T. Hanashiro; Janet Higuti; Luc Lens; Koen Martens; Hans Matheve; Erik Matthysen; Eveline Pinseel; Rose Sablon; Isa Schön; Robby Stoks; Karine Van Doninck; Hans Van Dyck; Pieter Vanormelingen; Jeroen Van Wichelen; Wim Vyverman; Luc De Meester; Frederik Hendrickx

This comprehensive study analyses the relationship between urbanization and biodiversity across multiple aquatic and terrestrial animal groups and at multiple spatial scales. The study reveals an overall strong negative impact of urbanization on both abundance and species richness within habitat patches. The study highlights the importance of considering multiple spatial scales and taxa.

November 2020
Environmental modelling & software. - 133(2020)November, 104852

Performance of one-dimensional hydrodynamic lake models during short-term extreme weather events

J.P. Mesman; A.I. Ayala; R. Adrian; E. De Eytoe; M.A. Frassl; S.Goyette; J.Kasparian; M. Perroud; J.A.A. Stelzer; D.C. Pierson; B.W. Ibelings

Three 1D lake models reproduced the overall impacts of storms and heatwaves well. The timing of effects was simulated accurately. Uncertainty in simulations increased during extremes compared to reference periods. Increased uncertainty should be kept in mind when applying models to extreme events.