Multiple stressors and pollutants

Freshwaters are used intensively by humans, meaning that they are exposed to a number of stressors. We explore the complex interrelations and impacts of the different stressors: How do nutrients and contaminants enter our surface waters, which factors play a central role in this process, and where are rivers and lakes in a particularly poor state? Nutrient inputs of nitrogen and phosphate, for example, may affect water quality, leading to algal blooms. It is often impossible to completely remove pharmaceuticals and biocides during wastewater treatment. They then end up in rivers and lakes, where they may affect the hormonal metabolism of fish and amphibians. Mining may lead to the contamination of adjacent freshwaters with potash and sulphate. Land use change, urbanisation, water control structures and the increasing use of artificial lighting at night (light pollution) exert additional pressure on our freshwaters. In our research, we acknowledge that use by humans is an important part of reality – only then can future-oriented solutions be developed.

Selected publications

Nature_Water
September 2024
Nature Water. - XX(2024)X, XX-XX

Mixtures of organic micropollutants exacerbated in vitro neurotoxicity of prymnesins and contributed to aquatic toxicity during a toxic algal bloom

Beate I. Escher; Jörg Ahlheim; Alexander Böhme; Dietrich Borchardt; Werner Brack; Georg Braun; John K. Colbourne; Janek Paul Dann; Joern Gessner; Annika Jahnke; Maria König; Nils Klüver; Martin Krauss; Jungeun Lee; Xiaojiang Li; Stefan Lips; Luisa Orsini; Karsten Rinke; Mechthild Schmitt-Jansen; Stefan Scholz; Tobias Schulze; Stephanie Spahr; Nadin Ulrich; Markus Weitere; Elisabeth Varga

This study investigated how organic micropollutants and the algal toxins prymnesins interact as mixtures in water extracts from the Oder River using neurotoxic effects on human nerve cells in vitro. The authors showed that prymnesins dominate the neurotoxic effects, but many of the detected organic micropollutants exacerbate the lethal effect of prymnesins.

Cover_Scientific_Reports
September 2024
Scientific Reports. - 14(2024), Art. 16445

Unpredicted ecosystem response to compound human impacts in a European river

Jan Köhler; Elisabeth Varga; Stephanie Spahr; Jörn Gessner; Kerstin Stelzer; Gunnar Brandt; Miguel D. Mahecha; Guido Kraemer; Martin Pusch; Christian Wolter; Michael T. Monaghan; Matthias Stöck; Tobias Goldhammer

The authors have compiled and analyzed the key environmental factors that led to the mass development of the brackish water alga Prymnesium parvum in the Oder in the summer of 2022. The data synthesis shows how multiple stressors combined to allow an alga that normally thrives in stagnant salt water to proliferate en masse in a completely atypical habitat.

August 2024
Ambio. - 53(2024)X, XX-XX

Temperatures and hypolimnetic oxygen in German lakes: Observations, future trends and adaptation potential

Robert Schwefel; Lipa G. T. Nkwalale; Sylvia Jordan; Karsten Rinke; Michael Hupfer

A study of oxygen and temperature trends in 46 German lakes showed that temperatures have risen mainly at the surface, but not in the deep water. This led to increased stratification and lower oxygen concentrations. Scenarios showed that these effects of climate change on oxygen content could be compensated by reducing nutrients.

February 2024
Environmental Pollution. - 344(2024), Art. 123437

Widely used herbicide metolachlor can promote harmful bloom formation by stimulating cyanobacterial growth and driving detrimental effects on their chytrid parasites

Erika Berenice Martínez-Ruiz; Ramsy Agha; Stephanie Spahr; Justyna Wolinska

The study investigated the effects of the herbicide metolachlor on host-parasite interactions, using the host-parasite system of the toxigenic cyanobacterium Planktothrix agardhii and its chytrid parasite Rhizophydium megarrhizum. Metolachlor promoted cyanobacteria growth and caused multi and transgenerational detrimental effects on parasite fitness. However, these effects are reversible.

Nature_Protocols
October 2023
Nature Protocols. - 18(2023) 3534–3564

Exposure protocol for ecotoxicity testing of microplastics and nanoplastics

Fazel Abdolahpur Monikh; Anders Baun; Nanna B. Hartmann; Raine Kortet; Jarkko Akkanen; Jae-Seong Lee; Huahong Shi; Elma Lahive; Emilia Uurasjärvi; Nathalie Tufenkji; Korinna Altmann; Yosri Wiesner; Hans-Peter Grossart; Willie Peijnenburg; Jussi V. K. Kukkonen

Despite the increasing concern about the harmful effects of micro- and nanoplastics (MNPs), so far, there exist no harmonised guidelines for testing the ecotoxicity of MNPs. An international research team with IGB has now developed protocols to assess the toxicity of these substances in soil and aquatic ecosystems.

Related Projects

Contact person
Martin Pusch
Christian Wolter
Sonja Jähnig
Thomas Mehner
Department
(Dept. 1) Ecohydrology and Biogeochemistry
(Dept. 2) Community and Ecosystem Ecology
(Dept. 3) Plankton and Microbial Ecology
(Dept. 4) Fish Biology, Fisheries and Aquaculture
(Dept. 5) Evolutionary and Integrative Ecology
Start
02/2023
End
04/2026
Topic
Contact person
Mark Gessner
Sabine Hilt
Department
(Dept. 1) Ecohydrology and Biogeochemistry
(Dept. 2) Community and Ecosystem Ecology
(Dept. 3) Plankton and Microbial Ecology
Start
07/2015
End
06/2024
Topic

Related Events

Related Downloads

EU Consultation: IGB feedback on Nutrient Action Plan

Based on its research and expertise, IGB commented on the EU Consultation “Nutrients – Action plan for better management”. While the scientific advice focuses on the impact of nutrient emissions on freshwater ecosystems, the IGB scientists underlined that aquatic systems are also closely linked to their terrestrial surrounding.

Experts at IGB

Tobias Goldhammer

Programme Area Speaker
Research group
Nutrient Cycles and Chemical Analytics

Franz Hölker

Programme Area Speaker
Research group
Light Pollution and Ecophysiology

Matthias Stöck

Research Group Leader
Research group
Genetics and Evolution of Fish (and other Vertebrates)

Markus Venohr

Programme Area Speaker
Research group
River System Modelling