(Dept. 3) Plankton and Microbial Ecology

Research in the Department of Plankton and Microbial Ecology on the shores of Lake Stechlin centres on impacts of global environmental change on inland waters. Consequences on the biodiversity and functioning of plankton communities in lakes receive particular attention. This includes investigations into the dynamics, activities and interactions of bacteria, phytoplankton, zooplankton and fungi. Field experiments, especially in a large outdoor facility dubbed the LakeLab in Lake Stechlin, are a hallmark of research in the department. Other essential elements are the analysis of long-term data, laboratory experiments and the development of ecological models and new methods to analyse plankton communities. We use the knowledge gained in theses studies to devise concepts and methods that foster the protection and sustainable management of inland waters in the face of ongoing environmental change.

Contact persons

Mark Gessner

Head of Department
Research group
Ecosystem Processes

Research groups

Mark Gessner
Hans-Peter Grossart
Jens Christian Nejstgaard
Sabine Wollrab

Department members

Selected publications

May 2022
Limnology and Oceanography. - 67(2022)6, 1402-1415

Flexible habitat choice of pelagic bacteria increases system stability and energy flow through the microbial loop

Luis Alberto Villalba; Rajat Karnatak; Hans-Peter Grossart; Sabine Wollrab

The theoretical study evaluated the microbial dynamics of particle-associated vs free-living bacteria. Bacterial generalists have the ability to utilize both habitats and increase stability and energy transport through the 'microbial loop'. Adaptive response strategies of bacteria are important to assess the consequences of increasing particle loads, e.g., sediment and microplastics.

May 2022
Ecology. - 103(2022)5, e3674

Stoichiometric mismatch causes a warming-induced regime shift in experimental plankton communities

Sebastian Diehl; Stella A. Berger; Wojciech Uszko; Herwig Stibor

The authors studied effects of warming on spring plankton dynamics in outdoor mesocosms. Experimental warming speeded up phytoplankton growth dramatically, triggering a massive bloom of phosphorus deficient algae that drove its zooplankton grazers to extinction. It shows that warming can aggravate the food quality mismatch at the plant–herbivore interface and limit energy transfer up the food web.

March 2022
Science of the Total Environment. - 814(2022), Art. 151925

Cross-continental importance of CH4 emissions from dry inland-waters

José R. Paranaíba; Ralf Aben; Nathan Barros; Gabrielle Quadra; Annika Linkhorst; André M. Amado; Soren Brothers; Núria Catalán; Jason Condon; Colin M. Finlayson; Hans-Peter Grossart; Julia Howitt; Ernandes S. Oliveira Junior; Philipp S. Keller; Matthias Koschorreck; Alo Laaso; Catherine Leigh; Rafael Marcé; Raquel Mendonça; Claumir C. Muniz; Biel Obrador; Gabriela Onandia; Diego Raymundo; Florian Reverey; Fábio Roland; Eva-Ingrid Rõõmo; Sebastian Sobek; Daniel von Schiller; Haijun Wang; Sarian Kosten

Despite significant progress in quantifying greenhouse gas emissions from dry inland waters, little is known about methane (CH4). The authors determined CH4 emissions from dry sediments across continents and found that the CH4 contribution ranged from 10 to 21% of the equivalent CO2 emissions. Therefore, CH4 emissions from dry inland waters should be considered for the global carbon cycle.

March 2022
Molecular Ecology. - 31(2022)6, 1716-1734

Land-use type temporarily affects active pond community structure but not gene expression patterns

Mina Bizic; Danny Ionescu; Rajat Karnatak; Camille L. Musseau; Gabriela Onandia; Stella A. Berger; Jens C. Nejstgaard; Gunnar Lischeid; Mark O. Gessner; Sabine Wollrab; Hans-Peter Grossart

The team investigated the ffects of land-use type on the composition and gene expression activity of aquatic organisms, using an eRNA approach. At times, there is a temporary difference in the active community structure between ponds in grasslands, forests, and arable fields, but not in the expressed functions. Soon after, the active community returns to being homogenous across the land-use types.

January 2022
Nature microbiology. - 6(2021), 479–488

Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession

Tanja Shabarova; Michaela M. Salcher; Petr Porcal; Petr Znachor; Jiří Nedoma; Hans-Peter Grossart; Jaromír Seda; Josef Hejzlar; Karel Šimek

The authors investigated the resilience of aquatic microbial communities, especially in small ponds, against flooding events. The most interesting result of their high temporal-resolution study was that the microbial communities, in particular bacteria, were surprisingly resilient against flooding events and that bacterial community repeatedly showed a defined path of recovery. 

Share page