Selected publications

Scientific highlights of IGB
Filter for
Please find all scientific publications of IGB under > scientific publications
For more detailed information please refer to our > library catalogue
1 - 10 of 90 items
  • Programme area:Dimensions of Complexity of Aquatic Systems
April 2025
WIREs Water. - 12(2025)2, Art. e70018

The Unexploited Treasures of Hydrological Observations Beyond Streamflow for Catchment Modeling

Paul D. Wagner; Doris Duethmann; Jens Kiesel; Sandra Pool; Markus Hrachowitz; Serena Ceola; Anna Herzog; Tobias Houska; Ralf Loritz; Diana Spieler; Maria Staudinger; Larisa Tarasova; Stephan Thober; Nicola Fohrer; Doerthe Tetzlaff; Thorsten Wagener; Björn Guse

Other hydrological data than streamflow have the potential to improve process consistency in hydrological modeling and consequently for predictions under change. The authors review how storage and flux variables are used for model evaluation and calibration; improving process representation.

April 2025
Biogeochemistry. - 168(2025), Art. 40

Biogenic polyphosphate as relevant regulator of seasonal phosphate storage in surface sediments of stratified eutrophic lakes

Lucas Schröder; Peter Schmieder; Michael Hupfer

Using nuclear magnetic resonance spectroscopy, the authors studied the polyphosphate seasonality in the topmost sediment layer of three stratified lakes with prolonged anoxic periods during summer stratification. Polyphosphate acted as a temporary phosphorus storage, formed at the beginning of the summer stratification under oxic conditions and released time delayed under anoxic conditions.

March 2025
WIREs Water. - 12(2025)2, Art. e70015

Recent Developments and Emerging Challenges in Tracer-Aided Modeling

Hyekyeng Jung; Dörthe Tetzlaff; Christian Birkel; Chris Soulsby

The authors reviewed recent advances and remaining challenges of tracer-aided modelling which offers insights into internal storages, water sources, flow pathways, mixing processes, and water ages, which cannot be derived from hydrometric data alone. Tracer data have the capability to falsify hydrological models and test hypotheses, and thus increase understanding of hydrological processes.

March 2025
Water Resources Research. - 61(2025)3, Art. e2024WR038779

DREAM(LoAX): Simultaneous Calibration and Diagnosis for Tracer-Aided Ecohydrological Models Under the Equifinality Thesis

Songjun Wu; Doerthe Tetzlaff; Keith Beven; Chris Soulsby

The authors developed a new algorithm DREAM(LoAX) as an effective conditioning tool to consider epistemic uncertainty in process-based models. It provides real-time diagnostic information of model failures for identification of uncertainty in data or flaws in model structure, and hence is a learning tool for limitations in current monitoring networks and development of future models.