(Dept. 2) Community and Ecosystem Ecology

Inland waters support exceptional biodiversity, are characterised by intense metabolism of matter, and provide important ecosystem services. However, freshwater ecosystems face high and increasing pressures from multiple stressors. The Department of Community and Ecosystem Ecology conducts research in both standing and running waters studying the response of freshwater communities and ecosystems to global change. Ultimately, we aim to advance our mechanistic understanding of the structure and functioning of inland waters as a basis for their sustainable management. Specifically, we focus on:

  • Response of freshwater communities and diversity to changing environments
  • Interactions between freshwater communities, their environment and ecosystem functioning
  • Spatial and temporal freshwater biodiversity patterns
  • Sustainable management of freshwater communities and ecosystems

We develop and analyse the long-term monitoring data of Lake Müggelsee and Spree as well as from other inland waters and their catchments, employ spatially explicit statistical and deterministic modelling approaches, and conduct lab and field experiments. Our department additionally encompasses research on the global effects of climate change and biodiversity and develops new theoretical concepts on that.

Contact persons

Sonja Jähnig

Head of Department
Research group
Aquatic Ecogeography

Department members

Selected publications

April 2022
Limnology and Oceanography. - 67(2022)S1, S101-S120

Antecedent lake conditions shape resistance and resilience of a shallow lake ecosystem following extreme wind storms

Michael W. Thayne; Benjamin M. Kraemer; Jorrit P. Mesman; Bastiaan W. Ibelings; Rita Adrian

The goal was to develop a systematic, standardized and quantitative methodology for the synthesis of resistance and resilience relative to short-term lake and extreme storm conditions. Resistance and resilience following extreme storms are primarily shaped by antecedent turbidity and thermal conditions. Increased storm intensity and duration diminish resistance and resilience of the lake.

 

March 2022
Molecular Ecology Resources. - 22(2022)3, 946-961

Refining the evolutionary time machine: an assessment of whole genome amplification using single historical Daphnia eggs

Christopher James O’Grady; Vignesh Dhandapani; John K. Colbourne; Dagmar Frisch

Aquatic sediments contain eggbanks of invertebrates such as the waterflea Daphnia, a keystone freshwater herbivore. These "time capsules" uniquely allow observation of genomic evolution over centuries. To bypass the problem of minute DNA amounts in individual eggs, the authors developed a whole genome amplification workflow, and show its utility to sequence full genomes of centuries-old eggs.

February 2022
Journal of Applied Ecology. - 59(2022)1, 165-175

Warming alters juvenile carp effects on macrophytes resulting in a shift to turbid conditions in freshwater mesocosms

Peiyu Zhang; Huan Zhang; Huan Wang; Sabine Hilt; Chao Li; Chen Yu; Min Zhang; Jun Xu

The authors tested the single and combined effects of warmer water (+4.5°C) and benthivorous juvenile common carp on aquatic macrophytes in 24 mesocosms (2500 L). Our study provides evidence for a regime shift from clear-water conditions dominated by submerged or floating-leaved macrophytes to a turbid state triggered by warming impacts on benthivorous fish rather than on macrophytes.

February 2022
Frontiers in Ecology and the Environment. - 20(2022)1, 49-57

From meta-system theory to the sustainable management of rivers in the Anthropocene

Núria Cid; Tibor Erős; Jani Heino; Gabriel Singer; Sonja C. Jähnig; Miguel Cañedo-Argüelles; Núria Bonada; Romain Sarremejane; Heikki Mykrä; Leonard Sandin; Riikka Paloniemi; Liisa Varumo; Thibault Datry

Most existing river conservation, restoration, and biomonitoring practices focus on local-scale strategies and measures. To improve the management of river networks in the Anthropocene, the authors suggest additional metrics and assessment approaches that incorporate regional processes more effectively.

February 2022
Ecology letters. - 25(2022)2, 255-263

A global agenda for advancing freshwater biodiversity research

Alain Maasri; Sonja C. Jähnig; Mihai C. Adamescu; Rita Adrian; Claudio Baigun; Donald J. Baird; Angelica Batista-Morales; Núria Bonada; Lee E. Brown; Qinghua Cai; Joao V. Campos-Silva; Viola Clausnitzer; Topiltzin Contreras-MacBeath; Steven J. Cooke; Thibault Datry; Gonzalo Delacámara; Luc De Meester; Klaus-Douwe B. Dijkstra; Van Tu Do; Sami Domisch; David Dudgeon; Tibor Erös; Hendrik Freitag; Joerg Freyhof; Jana Friedrich; Martin Friedrichs-Manthey; Juergen Geist; Mark O. Gessner; Peter Goethals; Matthew Gollock; Christopher Gordon; Hans-Peter Grossart; Georges Gulemvuga; Pablo E. Gutiérrez-Fonseca; Peter Haase; Daniel Hering; Hans Jürgen Hahn; Charles P. Hawkins; Fengzhi He; Jani Heino; Virgilio Hermoso; Zeb Hogan; Franz Hölker; Jonathan M. Jeschke; Meilan Jiang; Richard K. Johnson; Gregor Kalinkat; Bakhtiyor K. Karimov; Aventino Kasangaki; Ismael A. Kimirei; Bert Kohlmann; Mathias Kuemmerlen; Jan J. Kuiper; Benjamin Kupilas; Simone D. Langhans; Richard Lansdown; Florian Leese; Francis S. Magbanua; Shin-ichiro S. Matsuzaki; Michael T. Monaghan; Levan Mumladze; Javier Muzon; Pierre A. Mvogo Ndongo; Jens C. Nejstgaard; Oxana Nikitina; Clifford Ochs; Oghenekaro Nelson Odume; Jeffrey J. Opperman; Harmony Patricio; Steffen U. Pauls; Rajeev Raghavan; Alonso Ramírez; Bindiya Rashni; Vere Ross-Gillespie; Michael J. Samways; Ralf B. Schäfer; Astrid Schmidt-Kloiber; Ole Seehausen; Deep Narayan Shah; Subodh Sharma; Janne Soininen; Nike Sommerwerk; Jason D. Stockwell; Frank Suhling; Ram Devi Tachamo Shah; Rebecca E. Tharme; James H. Thorp; David Tickner; Klement Tockner; Jonathan D. Tonkin; Mireia Valle; Jean Vitule; Martin Volk; Ding Wang; Christian Wolter; Susanne Worischka

Researchers from 90 scientific institutions worldwide have stated that freshwater biodiversity research and conservation lag far behind the efforts  in terrestrial and marine environments. They propose a research agenda with 15 priorities aimed at improving research on biodiversity in lakes, rivers, ponds and wetlands. This is urgently needed as the loss of biodiversity there is dramatic.

Share page