(Dept. 2) Community and Ecosystem Ecology
Inland waters support exceptional biodiversity, are characterised by intense metabolism of matter, and provide important ecosystem services. However, freshwater ecosystems face high and increasing pressures from multiple stressors. The Department of Community and Ecosystem Ecology conducts research in both standing and running waters studying the response of freshwater communities and ecosystems to global change. Ultimately, we aim to advance our mechanistic understanding of the structure and functioning of inland waters as a basis for their sustainable management. Specifically, we focus on:
- Response of freshwater communities and diversity to changing environments
- Interactions between freshwater communities, their environment and ecosystem functioning
- Spatial and temporal freshwater biodiversity patterns
- Sustainable management of freshwater communities and ecosystems
We develop and analyse the long-term monitoring data of Lake Müggelsee and Spree as well as from other inland waters and their catchments, employ spatially explicit statistical and deterministic modelling approaches, and conduct lab and field experiments. Our department additionally encompasses research on the global effects of climate change and biodiversity and develops new theoretical concepts on that.
Research groups
Department members
Selected publications
Light pollution of freshwater ecosystems: principles, ecological impacts and remedies
Freshwater ecosystems across the world are biodiversity hotspots but also disproportionately threatened by light pollution. In this review the authors provide a synthesis of current knowledge on light characteristics and the ecological consequences of artificial light in inland waters and coupled adjacent ecosystems. The focus is on recent insights into effects and on ways to mitigate them.

Hypotheses in urban ecology: building acommon knowledge base
This study identified 62 research hypotheses used in urban ecology and mapped them in a conceptual network. It is the first such network, which also clusters urban ecology hypotheses into four distinct themes: (i) Urban species traits & evolution, (ii) Urban biotic communities, (iii) Urban habitats and (iv) Urban ecosystems.
The recovery of European freshwater biodiversity has come to a halt
The comprehensive study shows that between 1968 and 2010, biodiversity in river systems in 22 European countries initially recovered due to improved water quality. Since 2010, however, biodiversity has stagnated; many river systems have not fully recovered. The researchers therefore urgently recommend additional measures to further promote the recovery of biodiversity in inland waters.
Short-term effects of macrophyte removal on aquatic biodiversity in rivers and lakes
Study of the effects of macrophyte removal on phytoplankton, zooplankton and macroinvertebrates at five sites with highly variable characteristics repeating the same Before-After-Control-Impact design to disentangle general from site-specific effects. Macrophyte removal had negative effects on biodiversity, esp. on zooplankton and macroinvertebrates. It had positive effects on phytoplankton.
A database of freshwater macroinvertebrate occurrence records across Cuba
the researchers have set up a database with geo-referenced occurrence records of four groups of freshwater invertebrate taxa across Cuba. Detailed knowledge of the spatial distribution of freshwater species is an important basis for monitoring changes in aquatic ecosystems.