Environmental change
Lakes and rivers react extremely sensitively to climate change and environmental changes. As such, they act as an early warning system for global ecological change. Our long-term programmes at Lake Stechlin and Lake Müggelsee, as well as on River Spree document the consequences of this change. Data spanning several decades enables us to forecast how freshwaters will develop under certain scenarios. In the LakeLab, our globally unique experimental facility in Lake Stechlin, we simulate the impact that changing environmental conditions (e.g. extreme weather events or the increasing use of artificial lighting) have on lakes and aquatic organisms.
Vice versa, freshwaters also have an impact on climate change. They have the ability to store or release large quantities of greenhouse gases such as methane and carbon dioxide. We investigate which conditions influence these processes and what role is played by rivers, lakes and wetlands in the global carbon cycle.
Related News
Selected publications

Worldwide moderate-resolution mapping of lake surface chl-a reveals variable responses to global change (1997–2020)
Whether a lake appears blue or green is also related to its chlorophyll-a content. Researchers led by IGB used satellite data to draw conclusions about the concentrations of the green pigment produced by algae.
Towards critical white ice conditions in lakes under global warming
The quality of lake ice is of paramount importance for ice safety and lake ecology under ice. In 2020/2021, the researchers conducted a coordinated sampling campaign of lake ice quality during one of the warmest winters since 1880. They showed that lake ice during this period generally consisted of unstable white ice, which at times accounted for up to 100 percent of the total ice thickness.
The era of reference genomes in conservation genomics
The European Reference Genome Atlas (ERGA) is a pan-European scientific response to the current threats to biodiversity that aims to generate reference genomes of eukaryotic species across the tree of life. ERGA reference genomes will include threatened, endemic, and keystone species, as well as pests and species important to agriculture, fisheries, and ecosystem function.
Antecedent lake conditions shape resistance and resilience of a shallow lake ecosystem following extreme wind storms
The goal was to develop a systematic, standardized and quantitative methodology for the synthesis of resistance and resilience relative to short-term lake and extreme storm conditions. Resistance and resilience following extreme storms are primarily shaped by antecedent turbidity and thermal conditions. Increased storm intensity and duration diminish resistance and resilience of the lake.
Cross-continental importance of CH4 emissions from dry inland-waters
Despite significant progress in quantifying greenhouse gas emissions from dry inland waters, little is known about methane (CH4). The authors determined CH4 emissions from dry sediments across continents and found that the CH4 contribution ranged from 10 to 21% of the equivalent CO2 emissions. Therefore, CH4 emissions from dry inland waters should be considered for the global carbon cycle.