Songjun Wu

+49 (0)30 64181 666

Müggelseedamm 310, 12587 Berlin



2012-2016, Bachelor of Science in environmental science, Nanjing Normal University

2016-2019, Master of Science in environmental science, Nanjing Normal University

Since 2019, PhD candidate in ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin


PhD Topic

Tracer-aided monitoring and modelling of catchment-scale ecohydrological processes and its implication for water quality



1.       Investigating the impacts of long-term hydroclimatic change and riparian management on hydrology and water chemistry in a mixed land use catchment, and identifying the hot spot area of the hydro-chemical functioning

2.       Exploring the hydrology, isotopes, water chemistry and vegetation phenology in a higher spatiotemporal resolution in a riparian peatland (the hot spot area)

3.       Quantifying the hydrological and water quality fluxes in both catchment and hot spot area using distributed hydrological/water quality modelling



Multiple approaches are used to realise the objectives, including:

1.       Dense field sampling of water isotopes, water quality indices

2.       Hydrological and water quality modelling (mHM-Nitrate, and EcH2O-iso for plot or catchment-scale modelling)

3.       Technologies of unmanned aerial vehicle (UAV) and geographic information system (GIS) for ultra-high resolution multispectral imagery and DEM

4.       Deep learning approach for vegetation classification and soil moisture estimation based on UAV imagery



AGU Fall Meeting, 2020, H056-0022. (Poster)

Wu, S., Tetzlaff, D., & Soulsby, C. (2020). Long-term Monitoring Shows that Climatic Variability and Riparian Management Control the Coupling of Hydrology and Nutrient Concentrations in a Mixed Land Use Lowland Catchment.

AGU Fall Meeting, 2021, H13C-08. (Oral presentation)

Wu, S., Tetzlaff, D., Yang, X., Soulsby, C., Wu, S., Tetzlaff, D., et al. (2021). Unravelling the role of landscape characteristics, hydroclimate and water management on NO3-N cycling via a 30-year distributed modelling in a lowland catchment.

EGU General Assembly Conference, EGU22-46. (Oral presentation)

Wu, S., Tetzlaff, D., Yang, X., & Soulsby, C. (2022). Landscape characteristics, hydroclimate and management control spatiotemporal NO3-N patterns in a lowland catchment: implication from 30-year modelling and sensitivity analyses.


IGB Publikationen

Wu, S., Tetzlaff, D., Goldhammer, T., & Soulsby, C. (2021). Hydroclimatic variability and riparian wetland restoration control the hydrology and nutrient fluxes in a lowland agricultural catchment. Journal of Hydrology603

Wu, S., Tetzlaff, D., Yang, X., & Soulsby, C. (2022). Disentangling the influence of landscape characteristics, hydroclimatic variability and land management on surface water NO 3 ‐N dynamics: spatially distributed modelling over 30 years in a lowland mixed land use catchment. Water Resources Research

Wu, S., Tetzlaff, D., Yang, X., & Soulsby, C. (2022). Identifying Dominant Processes in Time and Space: Time-varying Spatial Sensitivity Analysis for a Grid-based Nitrate Model. Water Resources Research, e2021WR031149.

Wu, S., Tetzlaff, D., Goldhammer, T., Freymueller, J., & Soulsby, C. (2022). Tracer-aided identification of hydrological and biogeochemical controls on in-stream water quality in a riparian wetland. Water Research222, 118860.

Wu, S., Tetzlaff, D., Daempfling, H., & Soulsby, C. (2023). Optimising vegetation mapping strategies for ecohydrological applications: insights from monthly UAV-based classification in a heterogenous wetland. Journal of Hydrology. (In review)

Wu, S., Tetzlaff, D., Yang, X., Smith, A., & Soulsby, C. (2023). Quantifying flow paths in a riparian wetland using isotope-aided multi-criteria calibration of a distributed ecohydrological model. Water Resources Research. (In revision)


Andere Publikationen

Wu, S., Zhao, Y., Chen, Y., Dong, X., Wang, M., & Wang, G. (2019). Sulfur cycling in freshwater sediments: A cryptic driving force of iron deposition and phosphorus mobilization. Science of the Total Environment657, 1294–1303.

Landgraf, J., Tetzlaff, D., Wu, S., Freymüller, J., & Soulsby, C. (2022). Using stable water isotopes to understand ecohydrological partitioning under contrasting land uses in a drought‐sensitive rural, lowland catchment. Hydrological Processes36(12).

Yan, X., Thieu, V., Wu, S., & Garnier, J. (2022). Reservoirs change pCO2 and water quality of downstream rivers: Evidence from three reservoirs in the Seine Basin. Water Research213

Yan, X., Xu, X., Wang, M., Wang, G., Wu, S., Li, Z., et al. (2017). Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective. Water Research125, 449–457.

Yan, X., Xu, X., Ji, M., Zhang, Z., Wang, M., Wu, S., et al. (2019). Cyanobacteria blooms: A neglected facilitator of CH4 production in eutrophic lakes. Science of the Total Environment651, 466–474.

Zhao, Y., Wu, S., Yu, M., Zhang, Z., Wang, X., Zhang, S., & Wang, G. (2021). Seasonal iron‑sulfur interactions and the stimulated phosphorus mobilization in freshwater lake sediments. Science of the Total Environment768





Seite teilen