(Abt. 1) Ökohydrologie und Biogeochemie

Die Wechselwirkungen innerhalb und zwischen grünem Wasser (in terrestrischen Systemen) und blauem Wasser (Seen, Flüsse und Grundwasserleiter) beeinflussen in komplexer Weise die Lebensräume für Organismen und den reaktiven Transport von abiotischen Komponenten. Aquatische und terrestrische Systeme sind auf mehreren räumlich-zeitlichen Skalen gekoppelt. Das übergeordnete Ziel der Abteilung Ökohydrologie und Biogeochemie ist es, die ökohydrologischen und biogeochemischen Prozesse von vernetzten Landschaften und Gewässern in natürlichen, ländlichen und städtischen Gebieten zu verstehen. Unsere Forschungsprojekte behandeln daher die folgenden Kernthemen:
- Interaktionen von Landschafts-und Binnengewässer-Ökosystemen
- Physikalische und biogeochemische Rahmenbedingungen unter globalem Wandel
- Wassersicherheit in gestörten und urbanen Systemen
In unserer Forschung integrieren wir prozessbasierte und statistische Modellierung mit empirischen Daten, die in Freilandstudien, in großmaßstäbigen Manipulationsstudien, durch Langzeit-Monitoring und in Laborversuchen erhoben werden. Wir untersuchen ökohydrologische und biogeochemische Prozesse mit verschiedenen Tracer-Techniken, insbesondere stabilen Isotopen, sowie durch die Messung natürlich gelöster Stoffe, konservativer geogener Ionen, organischer Spurenstoffe und von Nährstoffen. Dabei verbinden wir Grundlagenforschung mit Anwendungsaspekten und wollen Auswirkungen von Klima- und Landnutzungsänderungen erfassen und vorhersagen. Mit der Laborinfrastruktur und Kompetenz auf den Gebieten der anorganischen und organischen Analytik sowie der Isotopenmessung nimmt die Abteilung eine zentrale Funktion für das gesamte Institut wahr. Um unserem Forschungsziel gerecht zu werden, kombinieren wir unsere fachliche Expertise aus den Forschungsdisziplinen Hydrologie, Geochemie, Gewässerphysik, Ökologie, Umwelttechnik und Geographie.

Landschafts-Ökohydrologie, Forschungsgruppe von Dörthe Tetzlaff, Grafik: Dörthe Tetzlaff / IGB

Grundwasser-Oberflächenwasser Interaktionen, Forschungsgruppe von Jörg Lewandowski, Grafik: Jörg Lewandowski / IGB

Physikalische Limnologie, Forschungsgruppe von Georgiy Kirillin, Grafik: Georgiy Kirillin / IGB

Organische Schadstoffe, Forschungsgruppe von Stephanie Spahr, Grafik: Stephanie Spahr / IGB

Ökohydraulik, Forschungsgruppe von Alexander Sukhodolov, Grafik: Alexander Sukhodolov / IGB

Nährstoffkreisläufe und chemische Analytik, Forschungsgruppe von Tobias Goldhammer, Grafik: Tobias Goldhammer / IGB

Flussgebietsmodellierung, Forschungsgruppe von Markus Venohr, Grapfik: Markus Venohr / IGB

Biogeochemische Prozesse in Sedimenten und Seenrestaurierung, Forschungsgruppe von Michael Hupfer, Grafik: Michael Hupfer / IGB
Forschungsgruppen
Abteilungsmitglieder
Ausgewählte Publikationen
Hydrological Connectivity Dominates NO3-N Cycling in Complex Landscapes – Insights From Integration of Isotopes and Water Quality Modeling
Die Autor*innen integrierten isotopenunterstützte N-Modellierung, um die (Nicht-)Verbindung von Fließwegen und damit verbundene biogeochemische Umwandlungen zu quantifizieren, was wichtig für die Land- und Wasserbewirtschaftung ist. Die hydrologische Konnektivität steuert die N-Umwandlungen, indem sie die Bodenfeuchte und den verfügbaren NO3-N für die Verarbeitung aus den Zuflüssen reguliert.
Understanding ecohydrology and biodiversity in aquatic nature-based solutions in urban streams and ponds through an integrative multi-tracer approach
Die Autor*innen verwendeten stabile Wasserisotope, Hydrochemie und eDNA in einem neuartigen, integrierten Tracer-Ansatz, um zu zeigen, wie ökohydrologische Interaktionen und Biodiversität in städtischen naturbasierten Lösungen durch städtische Wasserquellen und Konnektivität beeinflusst werden.
Persulfate activation by biochar for trace organic contaminant removal from urban stormwater
Wir zeigen, dass Biokohle Peroxodisulfat aktivieren kann, um weit verbreitete persistente und mobile organische Schadstoffe aus städtischem Niederschlagswasser zu entfernen. Unsere laborgestützte Untersuchung bildet die Grundlage für künftige Studien zur praktischen Anwendung von Biokohle und Peroxodisulfat für die Niederschlagswasserbehandlung.
Storage Dynamics and Groundwater–Surface Water Interactions in a Drought Sensitive Lowland Catchment: Process-Based Modelling as a Learning Tool
Die Autor*innen simulierten saisonale und langfristige Veränderungen in den räumlich-zeitlichen Mustern der Wasserspeicherdynamik und der Grundwasser-Oberflächenwasser-Interaktionen in einem Tieflandzufluss des Spreeeinzugsgebiets. Nach mehreren großen Dürreperioden sind die Grundwasserspeicher erschöpft und die Fließgeschwindigkeiten intermittierend.
The Unexploited Treasures of Hydrological Observations Beyond Streamflow for Catchment Modeling
Andere hydrologische Daten als der Abfluss haben das Potenzial, die Prozesskonsistenz bei der hydrologischen Modellierung und folglich die Vorhersagen bei Veränderungen zu verbessern. Hier wird untersucht, wie Speicher- und Flussvariablen für die Modellbewertung und -kalibrierung verwendet werden, um die Prozessdarstellung zu verbessern.