(Abt. 1) Ökohydrologie und Biogeochemie

Die Wechselwirkungen innerhalb und zwischen grünem Wasser (in terrestrischen Systemen) und blauem Wasser (Seen, Flüsse und Grundwasserleiter) beeinflussen in komplexer Weise die Lebensräume für Organismen und den reaktiven Transport von abiotischen Komponenten. Aquatische und terrestrische Systeme sind auf mehreren räumlich-zeitlichen Skalen gekoppelt. Das übergeordnete Ziel der Abteilung Ökohydrologie und Biogeochemie ist es, die ökohydrologischen und biogeochemischen Prozesse von vernetzten Landschaften und Gewässern in natürlichen, ländlichen und städtischen Gebieten zu verstehen. Unsere Forschungsprojekte behandeln daher die folgenden Kernthemen:
- Interaktionen von Landschafts-und Binnengewässer-Ökosystemen
- Physikalische und biogeochemische Rahmenbedingungen unter globalem Wandel
- Wassersicherheit in gestörten und urbanen Systemen
In unserer Forschung integrieren wir prozessbasierte und statistische Modellierung mit empirischen Daten, die in Freilandstudien, in großmaßstäbigen Manipulationsstudien, durch Langzeit-Monitoring und in Laborversuchen erhoben werden. Wir untersuchen ökohydrologische und biogeochemische Prozesse mit verschiedenen Tracer-Techniken, insbesondere stabilen Isotopen, sowie durch die Messung natürlich gelöster Stoffe, konservativer geogener Ionen, organischer Spurenstoffe und von Nährstoffen. Dabei verbinden wir Grundlagenforschung mit Anwendungsaspekten und wollen Auswirkungen von Klima- und Landnutzungsänderungen erfassen und vorhersagen. Mit der Laborinfrastruktur und Kompetenz auf den Gebieten der anorganischen und organischen Analytik sowie der Isotopenmessung nimmt die Abteilung eine zentrale Funktion für das gesamte Institut wahr. Um unserem Forschungsziel gerecht zu werden, kombinieren wir unsere fachliche Expertise aus den Forschungsdisziplinen Hydrologie, Geochemie, Gewässerphysik, Ökologie, Umwelttechnik und Geographie.

Landschafts-Ökohydrologie, Forschungsgruppe von Dörthe Tetzlaff, Grafik: Dörthe Tetzlaff / IGB

Grundwasser-Oberflächenwasser Interaktionen, Forschungsgruppe von Jörg Lewandowski, Grafik: Jörg Lewandowski / IGB

Physikalische Limnologie, Forschungsgruppe von Georgiy Kirillin, Grafik: Georgiy Kirillin / IGB

Organische Schadstoffe, Forschungsgruppe von Stephanie Spahr, Grafik: Stephanie Spahr / IGB

Ökohydraulik, Forschungsgruppe von Alexander Sukhodolov, Grafik: Alexander Sukhodolov / IGB

Nährstoffkreisläufe und chemische Analytik, Forschungsgruppe von Tobias Goldhammer, Grafik: Tobias Goldhammer / IGB

Flussgebietsmodellierung, Forschungsgruppe von Markus Venohr, Grapfik: Markus Venohr / IGB

Biogeochemische Prozesse in Sedimenten und Seenrestaurierung, Forschungsgruppe von Michael Hupfer, Grafik: Michael Hupfer / IGB
Forschungsgruppen
Abteilungsmitglieder
Ausgewählte Publikationen
Stepwise tracer-based hydrograph separation to quantify contributions of multiple sources of streamflow in a large glacierized catchment over the Tibetan Plateau
Die Autor*innen identifizierten Quellen u. Dynamiken des Oberflächenabflusses in einem Gletschergebiet des Tibetischen Plateaus anhand von isotopischen u. geochemischen Signaturen. Sie zeigen, dass die Einbeziehung hochauflösender Tracerdaten in eine Modellstruktur hilft, den Oberflächenabfluss aufzuschlüsseln u. Dynamiken der Grundwasserneubildung in Gletschergebieten zu identifizieren.
Consequences of the Aral Sea restoration for its present physical state: temperature, mixing, and oxygen regime
Der Aralsee ist ein Beispiel für großflächige Umweltzerstörung und ein Hoffnungszeichen durch seine teilweise Wiederherstellung. Die Feldstudien und Modellszenarien zeigen, dass der wiederhergestellte Teil des Aralsees bzgl. vertikaler Durchmischung und Sauerstoffversorgung gesund zu sein scheint. Kleine Veränderungen des Wasserspiegels oder der Transparenz könnten jedoch das Ökosystem verändern.
Urban Hydrological Connectivity and Response Patterns Across Timescales: An Integrated Time-Frequency Domain Analysis
Die Autoren untersuchten die Zusammenhänge zwischen Niederschlag, Grundwasser und Abfluss in der Wuhle in Berlin anhand von Autokorrelations-, Kreuzkorrelations- und Zeit-Frequenz-Analysen von Langzeitdaten. Trotz des starken Einflusses der städtischen Regenwasserkanalisation zeigten sie eine hohe Persistenz der Grundwassersignale.
Hydrological Connectivity Dominates NO3-N Cycling in Complex Landscapes – Insights From Integration of Isotopes and Water Quality Modeling
Die Autor*innen integrierten isotopenunterstützte N-Modellierung, um die (Nicht-)Verbindung von Fließwegen und damit verbundene biogeochemische Umwandlungen zu quantifizieren, was wichtig für die Land- und Wasserbewirtschaftung ist. Die hydrologische Konnektivität steuert die N-Umwandlungen, indem sie die Bodenfeuchte und den verfügbaren NO3-N für die Verarbeitung aus den Zuflüssen reguliert.
Understanding ecohydrology and biodiversity in aquatic nature-based solutions in urban streams and ponds through an integrative multi-tracer approach
Die Autor*innen verwendeten stabile Wasserisotope, Hydrochemie und eDNA in einem neuartigen, integrierten Tracer-Ansatz, um zu zeigen, wie ökohydrologische Interaktionen und Biodiversität in städtischen naturbasierten Lösungen durch städtische Wasserquellen und Konnektivität beeinflusst werden.